

CEWELD SA 318

TYPE Solid stainless steel welding wire for submerged arc welding stabilized stainless steels with high

Mo content

APPLICATIONS The alloy is widely used in the chemical and food-processing industries, as well as in shipbuilding.

Suitable for welding stabilized corrosion-resistant Cr-Ni-Mo steels for working temperatures up to

400°C.

PROPERTIES CEWELD® SA 318 is engineered to a very precise analysis to create a weld deposit of high purity,

superior hot cracking and corrosion resistance. CVN toughness down to -120 °C, resistant to intergranular corrosion up to 400 °C. Flux CEWELD® FL 838 or fused flux CEWELD® FL 880

CLASSIFICATION **AWS** A 5.9: ER318

> EN ISO 14343-A: S 19 12 3 Nb

F-nr 6 FΜ 5 W.Nr. 1.4576

SUITABLE FOR 1.4301, 1.4306, 1.4401, 1.4404, 1.4408, 1.4420, 1.4435, 1.4436, 1.4541, 1.4550, 1.4571, 1.4573,

1.4580, 1.4581, 1.4583

X 6 CrNiMoTi 17 12 2, X10 CrNiMoTi 18 12, X 6 CrNiMoNb 17 12 2, G-X 5 CrNiMoNb 18 10, X 10 CrNiMoNb 18 12, X 5 CrNiMo 18 11, X 2 CrNiMo 17 13 2, G-X 2 CrNiMo 18 10, X 2 CrNiMo 18 14 3, X 5

CrNiMo 17 12 2, G-X 6 CrNiMo 18 10, X 5 CrNiMo 17 13 3

UNS S31600, S31603, S31635, S31640, S31653,

AISI 316, 316L, 316Ti, 316Cb

CE **APPROVALS**

WELDING POSITIONS

TYPICAL CHEMICAL ANALYSIS OF THE FILLER

METAL (%)

ALL WELD MECHANICAL

PROPERTIES

С	Si	Mn	Р	S	Cr	Ni	Мо
0.035	0.5	1.6	0.02	0.02	19	12.5	2.75

Heat	R _{P0,2}	Rm	A5	Impact Energy (J) ISO-V			
Treatment	MPa	MPa	(%)	RT	-110°C		
As Welded /	390	590	30	110	47		

REDRYING TEMPERATURE Not required

GAS ACCORDING EN 14175